Arrangements of double pseudolines
نویسندگان
چکیده
An arrangement of double pseudolines is a finite family of at least two homotopically trivial simple closed curves embedded in the real projective plane, with the property that any two meet exactly four times, at which points they meet transversely, and induce a cell structure on the real projective plane. In this talk I will show that any arrangement of double pseudolines is isomorphic to the dual family of a finite family of pairwise disjoint convex bodies of a topological point-line incidence geometry on the real projective plane. The proof relies on an extension to arrangements of double pseudolines of the homotopy theorem for arrangements of pseudolines of G. Ringel (1956). An axiomatic characterization of the class of isomorphism classes of indexed arrangements of oriented double pseudolines will be also discussed and similar results concerning arrangements of double pseudolines in Möbius strips will be reported. (This is joint work with my PhD student Luc Habert.)
منابع مشابه
An homotopy theorem for arrangements of double pseudolines
We define a double pseudoline as a simple closed curve in the open Möbius band homotopic to the double of its core circle, and we define an arrangement of double pseudolines as a collection of double pseudolines such that every pair crosses in 4 points – the crossings being transversal – and induces a cell decomposition of the Möbius band whose 2-dimensional cells are 2-balls, except the unboun...
متن کاملOn the number of simple arrangements of five double pseudolines
We describe an incremental algorithm to enumerate the isomorphism classes of double pseudoline arrangements. The correction of our algorithm is based on the connectedness under mutations of the spaces of one-extensions of double pseudoline arrangements, proved in this paper. Counting results derived from an implementation of our algorithm are also reported.
متن کاملConvex-Arc Drawings of Pseudolines
Introduction. A pseudoline is formed from a line by stretching the plane without tearing: it is the image of a line under a homeomorphism of the plane [13]. In arrangements of pseudolines, pairs of pseudolines intersect at most once and cross at their intersections. Pseudoline arrangements can be used to model sorting networks [1], tilings of convex polygons by rhombi [4], and graphs that have ...
متن کاملTriangles in Euclidean Arrangements
The number of triangles in arrangements of lines and pseudolines has been object of some research Most results however concern arrangements in the projective plane In this article we add results for the number of triangles in Euclidean arrange ments of pseudolines Though the change in the embedding space from projective to Euclidean may seem small there are interesting changes both in the resul...
متن کاملSymmetric Simplicial Pseudoline Arrangements
A simplicial arrangement of pseudolines is a collection of topological lines in the projective plane where each region that is formed is triangular. This paper refines and develops David Eppstein’s notion of a kaleidoscope construction for symmetric pseudoline arrangements to construct and analyze several infinite families of simplicial pseudoline arrangements with high degrees of geometric sym...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1101.1022 شماره
صفحات -
تاریخ انتشار 2008